The Gray Man of Hatteras

 , By Caroline
on Saturday, August, 27 2011 06:03:53 pm   , 231 words  
Categories: Uncategorized , 47067 views

Completed in 1870, the Cape Hatteras Lighthouse is the tallest lighthouse in the world. In 1999 the lighthouse was moved further inland to protect it from beach erosion.

With Hurricane Irene battering the coast of North Carolina it brings to mind The Gray Man of Hatteras, a ghost that is said to appear foreshadowing approaching hurricanes.  The legend is that a man dressed in grey clothes walks along the Cape Hatteras shore between Cape Point and the Hatteras Lighthouse warning of approaching hurricanes.   It is uncertain of when the Gray Man made his first appearance but sightings of the Gray Man go back to the early 1900s.   Accounts of the Gray Man are sketchy; some speak only of seeing the Gray Man and upon approaching he starts to blur and dissapears.  Other accounts speak of a verbal warning from the Gray Man before he disappears.

It is uncertain of who the Gray Man was in life but past accounts speaks of a man named Gray who lived not far from Cape Point in the late 1800s.  Before modern weather statellites, hurricanes often caught people unaware.  The legend goes that Gray went out to sea not knowing that a hurricane was approaching and drown during the storm.  Since his death, Gray appears before an approaching hurricane to give out his warnings to allow others the chance to reach safe haven from the storm.


Wildflowers: Spiderworts

 , By Ronald Howard Livingston
on Wednesday, August, 10 2011 06:37:43 pm   , 1075 words  
Categories: Uncategorized , 57750 views


Though I have in years past noticed spiderworts, I have only recently been paying particular attention to these fascinating and beautiful plants. I have never really done much in the way of research on them; however, the wildflowers here in the coastal region of Texas this year* have been truly spectacular, and I have been trying, rather unsuccessfully, to capture their beauty in pictures. Likewise I have been attempting to identify these plant species from a favorite reference book I have on North American flora and fauna. I found the plant illustrated and described therein, and one fact stated about spiderwort blooms so amazed me that I just had to know more!

Despite my study, I'm still not certain if the spiderworts growing locally are specimens of Tradescantia humilis, commonly called "Texas Spiderwort," but the ones I've been seeing here in open prairie areas thriving quite well in full sunlight are all of the same species and are very pretty. While these local plants have bluer blooms than the slightly purplish-pink Texas Spiderworts depicted on internet sites, various references state that bloom color variations of certain spiderworts may be dependent upon soil ph. Texas is home to several species of spiderworts, including the widespread Tradescantia ohiensis, also known as "Bluejacket," which grows over much of the eastern United States. There are six species native to the area around Austin.

Spiderwort is a rather peculiar name for a flowering plant, and explanations for it differ from one reference to another.  The genus name (Tradescantia) is in honor of John Tradescan, Senior, head gardener for King Charles I of England. Tradescan was a renowned collector of garden plants and he and his son, John, Jr., who after his father's death in 1638 was also head gardener to King Charles I, were responsible for introducing many species of New World plants to the gardens of Europe. The latter part of the common name of spiderwort (or spider wort) comes from the Anglo-Saxon word "wyrt" meaning "herb" or "root".  The "spider"-part of the name is less definitely attributable. One explanation is that it is due to the way in which the blooms (each of which lives but one day) hang like spiders as though on a web. Another attribution states that there was a belief that certain parts of the plant would cure spider bites. (Sap of the plant can be used to soothe scrapes and scratches.) Still another explanation has it that the name comes from the spider-web-like hairs (chains of single cells) that emanate from the stamens of the blossoms of some species.

Yet another explication attributes the name to the web-like streams of mucilaginous substance that effuse from torn and separated stems or leaves. These strands dry very quickly upon exposure to air, creating threads like the strands made by a spider. This characteristic of the plant is also responsible for another common name of the plant, "cow slobber."

While a bouquet of cow slobber may not sound too appealing, consider that cow slobber plants are also edible---Yum, cow slobber!---(stems, leaves, and flowers, can be eaten raw or added, like okra, to stews as a thickening agent). One source states that spiderwort tastes like spinach. Another points out that the blossoms make a colorful garnish for salads. (There is an interesting YouTube video on the preparation of spiderwort: "EatTheWeeds: Episode 15: Spiderwort, Tradescantia.") Sources vary on the degree of edibility of different species of spiderwort, thus, I'd recommend careful research and consultation with local experts before ingesting any wild plant. One website source that gives this caution also states that Tradescantia virginiana is edible, as do many other websites, and yet another states that it is not edible but has medicinal properties.

There are 71 species of the Tradescantia genus. Representatives of this monocotyledonous plant range throughout much of the Americas from southern Canada to northern Argentina.  The first species collected for John Tradescan sometime before 1629 (when it was introduced to the gardens of England) was the Tradescantia virginiana. The first fully scientific description of the plant was made in 1898 by John Small a botanist and curator at the New York Botanical Garden.

Spiderworts hybridize easily and partly for this reason have long, since the time of Tradescan, been a garden favorite. Attribution of species in the wild is often compounded due to this tendency to hybridize. Being monocots (plants like grasses whose seeds sprout with one leaf, or cotyledon, as opposed to dicots, which have two cotyledons), spiderworts possess three pedals. (The bloom pattern of monocots is flowers of three, six, or nine petals.) The blooms in the wild are usually blue or a variant thereof.  There are six stamens, ending with a yellow or orange tip. As stated, the stamens have fine hairs that are often quite showy. There is a quality about the blooms and stamens of spiderworts that is quite amazing. Spiderworts are more sensative than most of the instruments that exist for the detection of low levels of radiation. The cells of the stamen hairs, which in most varieties are blue, change by mutation from blue to pink when exposed to even the most minute levels to ionizing radiation. Likewise they react in the same way to increased levels of environmental pollution.

Wild spiderworts are often welcomed as garden plants whenever they appear as "volunteers." Wild and domesticated varieties are often used as border plants. They can be grown from seed, from cuttings, and from transplanting of entire plants or their roots. The plants can grow in full sun with little or no shade but need plenty of water for consistent flowering. Each bloom lasts only a day, and if touched in the midday sun, a flower will wither into a sticky blue fluid, especially after the bees or other insects have fertilized it and it has begun to wither. Spiderworts will bloom for several months depending on the varety and locale. In Texas, the flowers can be seen from March to June. (In its home range Tradescantia virginiana blooms from May through August.) The flowers appear in clusters atop the stem and bloom successively over several months. There are many domesticated spectacular varieties of spiderworts and they (as well as their wild cousins) are a beautiful, suitable, and colorful addition to any garden.



Spiderwort (possibly Tradescantia humilis, Rose) in Brazoria County, Texas.

John Tradescan, Sr., head gardener to King Charles I of Great Britain.

(*This article was first published 8 April 2011.)

From Plastic and Biomass Refuse to Oil

 , By Ronald Howard Livingston
on Monday, July, 18 2011 11:56:00 pm   , 829 words  
Categories: Uncategorized , 72439 views

Over the last few years, as costs of motor fuels climb ever higher and as concerns grow over the carbon footprint of waste products ranging from sewerage to plastics, the process of thermal depolymerization (the breakdown of complex  macromolecules which consist of repeating structural units into monomers or simple molecules capable of bonding to form polymers) has been increasingly applied as a solution for dealing with waste and thus has been increasingly in the news.  Through pyrolysis (the decomposition or transformation of certain compounds using heat in the absence of oxygen), polymers can be broken down and made available for reformulations.  Anhydrous pyrolysis which takes place in the absence of water is generally referred to simply as pyrolysis. (An industrial process for making charcoal from wood is an example.) The process of hydrous pyrolysis uses water in breaking down polymers into monomers.  Though plastics and waste-biomass pyrolysis will not take the place totally of petroleum drilling and refining for acquiring components for polymers for fuels and manufacturing, such recycled use will reduce the negative environmental impacts of these organic wastes. One tremendously important positive of depolymerization of plastics, for example, through pyrolysis is the elimination of CO2 and toxin emissions in their utilization as fuel.

Recently reported in the news and the subject of a YouTube sensation was the creation and use of a safe and effective relatively small machine that converts plastics to oil useable as a simple fuel for stoves and generators. This same oil can be refined for use as motor fuel.  The company that has developed and manufactures the machine (Blest Company of Japan) makes one of its machines available at about $12,700 (U.S.). This small machine is the one demonstrated in the YouTube video which at this writing has had 1,689,345 views. YouTube lists other videos on this particular machine and several more on the process it uses in general.

A similar process (using infrared energy for heating the plastic waste) is utilized by Envion which has established a $5 million facility opened in September of 2009 in Montgomery County, Maryland. The plant is capable of processing 6,000 tons of plastic annually into about one-million barrels of a light crude oil. Blended with other components the product can be sold as diesel or gasoline.

Researchers at the University of Warwick in Coventry, United Kingdom, have developed a process utilizing pyrolysis wherein various types of plastics can be broken down into a number of useful components, retrievable mostly through distillation. Processing plants envisioned by the Warwick researchers are projected to be able to deal with 10,000 tons of plastic waste per year and be very commercially profitable.

Not only plastics can be transformed into monomers for commercial purposes through thermal depolymerization but biomass as well. One of the most innovative uses of the technology is in the conversion of plant and animal refuse into oil. A commercial processing plant has been built by Renewable Environmental Solutions near the ConAgra Foods Butterball turkey plant in Carthage, Missouri, to process slaughter waste. ConAgra produces about 200 tons of waste daily from the slaughter of 30,000 turkeys. The thermal depolymerization plant built nearby is a joint venture of ConAgra and Changing World Technologies (CWT) of West Hempstead, New York. Estimates are that the plant can convert the waste into 500 barrels (21,000 US gallons) of oil daily.

Thermal depolymerization process (TDP) has been considered as an alternative for sewerage treatment in the United States, according to a 2007 article in USA Today.  Similarly,  a University of Illinois (Urbana-Champaign) research team, lead by Yuanhui Zhang, an agricultural engineering professor there, has been able to produce oil from hog manure through the use of a small-scale thermochemical reactor. Heat and pressure applied by the reactor decompose the long-chain hydrocarbons into shorter ones, rendering oil, methane, carbon dioxide, and water.  As the price of a barrel of imported oil gets higher, the more economical the production of thermal depolymerization of hog manure becomes, not only rendering valuable fuel but saving farmers an expensive waste-elimination problem and saving the environment from pollution. It is estimated that during the production cycle of one pig enough manure is excreted to be converted into 21 gallons of crude oil.

One of the limitations to the economic efficiency of the process of thermal depolymerization is the lack of sufficient cheap feedstocks. Agricultural plant and animal waste is often utilized in fertilizer, feeds, and feedstock for other industries. The current trend to develop and exploit certain high yield energy crops holds potential as feedstock for thermal depolymerization process oil.

The benefits of producing oil through thermal depolymerization are many. Besides the production of oil, there is the rendering of useful and mostly valuable by-products. To these benefits the positive environmental effects of utilizing and diminishing pollutants from our landscapes, our oceans, and our landfills can be added.  While the industry is not without some criticism, these negative concerns are mostly aimed at the environmental effects of human industrial activities in general.


[This article first appeared on Xomba in February 2011.]

<< 1 ... 5 6 7 8 9 10 11 12 13 14 15 >>

Search De Omnis

  XML Feeds